MONONGALIA GENERAL HOSPITAL 1200 J.D. ANDERSON DRIVE, MORGANTOWN, WEST VIRGINIA

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN REPORT

ECH THRE

THE PENNSYLVANIA STATE UNIVERSITY DEPARTMENT OF ARCHITECTURAL ENGINEERING SENIOR THESIS 2008-2009

SUBMITTED: NOVEMBER 21, 2008

HIROKI OTA STRUCTURAL

DR. A. M. MEMARI

Table of Contents

Executive Summary	ii
Introduction	1
The Monongalia General Hospital	1
Structural System	2
Building Design Loads	3
Load Path	6
Lateral System Analysis	7
Conclusion	13
Appendices	
Appendix A – Project Team Directory	A-1 (14)
Appendix B – Figures	B-1 (16)
Appendix C – Photographs	C-1 (25)
Appendix D – Codes	D-1 (28)
Appendix E – Calculations	E-1 (30)
Appendix F – References	F-1 (36)

Monongalia General Hospital Morgantown, WV Pro-Con Study of Alternate Floor Systems

Executive Summary

Purpose

The Lateral System Analysis and Confirmation Design report (Tech 3) discusses the lateral system of the Monongalia General Hospital. The columns and shear walls have been analyzed against the lateral forces (wind and seismic) found in Tech 1. The Hospital was modeled using ETABS based on the structural drawings provided by the Atlantic Engineering Services dated December 2005.

Building Description

The Monongalia General Hospital is a 405,994 square feet hospital located in Morgantown, West Virginia. The building project includes a 280,000 square feet addition as well as a 60,000 square feet renovation to the existing structure. The building envelope is a brick façade tied to structural concrete walls with openings for punch windows and curtain wall systems. Aluminum curtain wall systems can be seen all around the Hospital, oriented around lobbies and other major openings on plan. The system consists of insulated tempered spandrel glass framed by aluminum mullions which is tied into the concrete structural system. The main structural system of the Hospital consists of two-way flat slab supported by columns that follow a typical grid and edge beams located in the perimeter of each floor. The loads carried by the columns are transferred to the foundations. The lateral loads are resisted by twelve shear walls of varying height and width located in various portions of the building.

Lateral System Analysis

The Monongalia General Hospital's lateral load resisting system was found to be a shear wall system, a different finding from the assumptions from earlier technical reports. The shear wall was analyzed against lateral loads under two main conditions: a shear wall by itself and as a system. Under these conditions drift of the shear walls and the building as whole, and the strength of the shear wall was studied. From the analyses conducted, the lateral force resisting system has proved to be adequate to resist the lateral forces.

Monongalia General Hospital

1200 J.D. Anderson Drive Morgantown, WV

Lateral System Analysis and Confirmation Design Report

Introduction

The Lateral System Analysis and Confirmation Design report (Tech 3) discusses the lateral system of the Monongalia General Hospital. The columns and shear walls have been analyzed against the lateral forces (wind and seismic) found in Tech 1. The Hospital was modeled using ETABS based on the structural drawings provided by the Atlantic Engineering Services dated December 2005.

The Monongalia General Hospital

The Monongalia General Hospital is located on 1200 J.D. Anderson Drive, West Virginia (Photograph 2 for aerial view, Photograph 3 for façade). The current project the Hospital is going through is a 340,000 square foot expansion and renovation named the Hazel Ruby McQuain Tower, this new addition will provide more various facilities and departments to the Hospital. The construction started on June of 2006 and is scheduled to be completed on May of 2009 with a design-build contract with a guaranteed maximum price set at an estimated \$69,000,000 by the Turner Construction Company. The Tower has been designed by Freeman White, Inc. from North Carolina and the structure designed by Atlantic Engineering Services from Pittsburgh. (See Appendix A for Project Team Directory)

The Monongalia General Hospital's plan can be divided into four different quads, A, B, C, and D (Figure 1). The first floor of the Monongalia General Hospital occupies 92,086 square feet and houses a boiler/chiller room, electrical rooms, doctors' offices, labs, nurse stations, storage spaces, and a dining space equipped with a food services kitchen. The second floor follows a similar layout but provides more space for examination rooms as well as a gift shop and café on the southern face of Quad A. The third floor mainly consists of patient rooms with the central part of the plan dedicated to operation rooms. The third floor has a reduced square footage compared to those of the floors below with an area of 80,882 square feet; the western section of Quad D does not continue up to the third floor as patient room spaces but provides housing for two air handling units. The fourth floor sees an even less square footage on plan at 53,833 square feet, with the western section of Quad D no longer existing at this elevation. This floor only houses private patient rooms, each equipped with a private toilet and shower. The square footage of the fourth floor continues up to the fifth, housing more private patient rooms as well as a Labor, Delivery, Recovery, and Postpartum (LDRP) rooms in Quad B and C. The sixth floor sees nearly a fifty percent reduction in square footage from the fifth floor with only Quads B and C serving rooms for private patients. The rooftop at Quad A is located at this elevation and houses five air handling units. Acoustic ceiling systems are utilized on each floor to provide acoustic insulation. The rooftop of the Monongalia General Hospital is used primarily to house

mechanical equipment. Two different types of roof systems are utilized: an adhered roof system and a ballasted roof system. The ballasted roof system is only present on the rooftop of Quad A and all other roofs utilize the adhered roof system. (Refer to Figure 2 for building cross section)

The exterior façade of the Monongalia General Hospital is a brick façade tied to 8" structural concrete walls with openings for punch windows and curtain wall systems. Windows are typically aluminum punch window units and located where there are offices and patient rooms, located on the third floor and up. Aluminum curtain wall systems can be seen all around the Hospital, oriented around lobbies and other major openings on plan (Photograph 1 and 3). The system consists of insulated tempered spandrel glass framed by aluminum mullions which is tied into the concrete structural system. Two inch rigid insulation is provided all around the building for insulation.

Structural System

Introduction

The primary structure of the Monongalia General Hospital is reinforced concrete with several composite floor systems present in parts of the building where appropriate (i.e. canopy/wall junctions, canopy fascia, etc.). The concrete used for the Hospital ranges from 3000 pounds per square inch (psi) to 5000 psi depending on its use. All concrete, as specified by ASTM C150; is normal weight concrete with a minimum weight of 144 pounds per cubic foot, and the reinforcement used are all ASTM A615 – Grade 60 steel reinforcement bars.

Foundation and Columns

Concrete foundations are placed below every column located at a minimum depth of 3'-6" below grade and utilize 3000 psi cast in place concrete. The columns that transfer the loads to these foundations are all 24 inches by 24 inches utilizing 5000 psi cast in place concrete. A total of 100 columns are present in the structure ranging in height from 11'-6" (supports one floor) to the full height of the building 58'-5". There are six columns in the structure in which the column's material changes from concrete to steel. These columns support the canopy in Quad A as well as used as corner columns for the stair towers.

Slabs

The slab on grades are 5" thick normal weight concrete and the slabs used in floors above are two-way flat plate slabs that utilizes 4000 psi normal weight concrete and are used as the primary floor system with the exception of a few in Quad C where an emergency energy plant is present: a composite concrete-steel floor system is used. The two way slab system is 8 inches thick and transfers its load to the columns and concrete edge beams present in the perimeter of each floor.

Beams

The beams are all variable in size although the dominant cross section is an 18 inch by 24 inch beam usually spanning 27' from column to column. Like the columns, the concrete used for the beams are 5000 psi normal weight concrete framed in by the two way slabs. As mentioned earlier, beams in this Hospital are all edge beams with an exception around openings in plan for elevator shafts, stairs, as well as for the energy plant located in the northern part of Quad C.

Shear Walls

There are twelve lateral force resisting shear walls present in the Hospital (Figure 3). All of these are variable sizes ranging in height and width, the most representative shear wall being a $52'-9-1/8'' \times 70'$ wall with two sets of eight #5 bars used at each floor level.

Building Design Loads

Gravity Loads

For the structural analysis, gravity loads were determined as per ASCE 7-05, AISC 13th Edition, IBC 2006, and other relevant publications. The construction documents were also referenced to provide a better perception of code compliant loads. On the following page is a table listing the loads by type and material.

Floor Loads			
Туре	Material/Occupancy	Load	Reference
	Normal Weight	145 PCF	Drawing G1-2
	Concrete		
	Steel	Per shape	AISC 13 th Edition
Dead Load	Brick Masonry	40 PSF	MSJC
	Partitions	20 PSF	Drawing G1-2
	Superimposed	10 PSF	*
	Public Areas	100 PSF	IBC 2006
	Lobbies	100 PSF	IBC 2006
	Corridors (1 st Floor)	100 PSF	IBC 2006
Live Load	Corridors (Above 1F)	80 PSF	IBC 2006
	Operation Rooms	60 PSF	Drawing G1-2
	Patient Rooms	40 PSF	Drawing G1-2
	Mechanical	150 PSF	Drawing G1-2
Stairs		100 PSF	Drawing G1-2
	Roof	Loads	
	Normal Weight	145 PCF	Drawing G1-2
	Concrete		
Dead Load	Steel	Per shape	AISC 13 th Edition
	Brick Masonry	40 PSF	MSJC
	Superimposed	10 PSF	**
Live Load	Roof Live Load	20 PSF	Drawing G1-2
	Mechanical	150 PSF	Drawing G1-2
Snow Load	Flat Roof Load	24 PSF	ASCE 7-08
Rain Load	Rain Load	21 PSF	ASCE 7-08

*Includes electrical and telecommunications wiring, ductwork, drop ceiling

**Includes ballasting, waterproofing, insulation

Snow drift loads were to be considered as a loading condition as per ASCE 7-08 however this type of loading was determined to be beyond the scope of this report and therefore neglected and will be discussed in future reports.

Lateral Loads

Lateral loads were calculated as per ASCE 7-08. Although the building is only six stories high, these loads must be considered as a design issue. The wind loads were calculated by referencing parameters from ASCE 7-08, IBC 2006, and the United States Geological Service under the analytical method:

-	Basic Wind Speed	90 mph
-	Direction Factor	0.85
-	Occupancy Category	IV
-	Importance Factor	1.15

		D
-	Exposure Category	В
-	Topographic Factor	1
-	Gust Effect Factor	0.85
-	Fundamental Frequency	6.43 (Rigid Structure)
-	Peak Factor	3.4
-	Enclosure	Enclosed

The above listed parameters were used to calculate the wind load in pounds per square feet for the different surfaces of the Hospital:

Wind Loads					
	North to South Wind Pressure			East to West Wind Pressure	
	Height (ft)	Pressure (PSF)	Height	Pressure (PSF)	
	0-15	7.9	0-15	7.9	
	20	8.5	20	8.5	
	25	8.9	25	8.9	
Windward	30	9.6	30	9.6	
	40	10.5	40	10.5	
	50	11.2	50	11.2	
	60	11.3	60	11.3	
	70	11.3	70	11.3	
Leeward	All	-8.3	All	-7.9	
	Base Shear (kips)	362.3	Base Shear	362.3	
	Overturning		Overturning		
	Moment (k-ft)	47875.4	Moment (k-ft)	47875.4	
	Windward to 90°	-12.7	Windward to 90°	-12.7	
Roof	90°-180°	-7.0	90°-180°	-7.0	
	180° to Leeward	-4.2	180° to Leeward	-4.2	

(Refer to Figure 4and 5 for Wind Loading Diagram)

The seismic loads were also calculated in a similar fashion, by referencing the aforementioned publications, the following parameters were used:

-	Occupancy Category	IV
-	Importance Factor	1.5
-	Seismic Category	А
-	Site Class	С
-	Spectral Acceleration, Short Period	0.133
-	Spectral Acceleration, 1 Second	0.052
-	Site Coefficient, F _a	1.2
-	Site Coefficient, F _v	1.7
-	R-Factor	5.0

These parameters were used under the equivalent lateral force procedure to calculate the base shear of the building as well as the force acting at each floor level:

Seismic Loads		
Floor	Height (ft)	F_x (kips)
1	0	314.83
2	12	340.39
3	24	389.23
4	35.5	278.90
5	47	367.52
6	58.5	455.63
Roof	70	314.83
Seismic Base Shear (kips)		1543.78
Overturning Moment (k-ft)		33854.8

(Refer to Figure 6 for Seismic Loading Diagram)

Load Path

Wind

The load induced by the wind will travel through the curtain wall or the masonry veneer, travel through the floor. The load will then follow the stiffness to the shear walls (stiffest structural member of the Hospital), and the load is directly transferred downwards to the footings and then to the earth.

Seismic

The seismic load will travel through the floor and follow the stiffness to the shear wall. The shear wall will directly transfer its load to its base, the wall footings and then release the load to the earth.

Lateral System Analysis

Through the analysis using ETABS, the shear wall system was the dominating lateral load resisting system in the Hospital as opposed to the initial speculation that the lateral load resisting system was a combination of moment frames and shear walls. There are a total of twelve shear walls present in the Hospital (see Figure 3) divided into three groups of four placed around openings for elevators. Two major types of analyses were undertaken in the writing of this report: Shear walls alone loaded with wind and seismic forces, and the building as a whole (including the columns and a fictitious floor) utilizing the following load cases:

Upon analyzing the results provided by the computer model, the dominating load case was case 6. This load case was used for the remainder of the lateral load resisting system study.

Columns

As mentioned, columns were found to have no contribution to the resisting of lateral forces. The building modeled on ETABS was initially analyzed under lateral loads only. Through this, only the shear walls have been found to be resisting the lateral loads.

Shear Walls

As mentioned above, the shear wall is the main lateral load resisting system in the Hospital. The shear wall was analyzed under two main different conditions. The first to be discussed is the shear wall analyzed as a standalone structure as shown in Figures 7 to 9. The shear walls have been modeled as 12" thick meshed membranes. The shear walls were loaded with a unit force to study the rigidity and the drift for the East-West (X) direction and the North-South (Y) direction. The following table summarizes the findings:

Shear Wall Group 1 (X Direction)

Story	Drift
STORY5	0.000001
STORY4	0.000001
STORY3	0.000001
STORY2	0
STORY1	0

DISPLACEMENT	RIGIDITY
0.000003	333333.3333

Shear Wall Group 1 (Y Direction)

Story	Drift
STORY5	0.000003
STORY4	0.000002
STORY3	0.000002
STORY2	0.000001
STORY1	0.000001

DISPLACEMENT	RIGIDITY
0.000009	111111.1111

Shear Wall Group 2 (X Direction)

Story	Drift
STORY6	0.000002
STORY5	0.000002
STORY4	0.000002
STORY3	0.000001
STORY2	0.000001
STORY1	0

DISPLACEMENT	RIGIDITY
0.00008	125000

Shear Wall Group 2 (Y Direction)

Story	Drift
STORY6	0.000001
STORY5	0.000001
STORY4	0.000001
STORY3	0.000001
STORY2	0
STORY1	0

DISPLACEMENT	RIGIDITY
0.000004	250000

Shear Wall Group 3 (X Direction)

Story	Drift
STORY6	0.000001
STORY5	0
STORY4	0
STORY3	0
STORY2	0
STORY1	0

DISPLACEMENT	RIGIDITY
0.000001	1000000

Shear Wall Group 3 (Y Direction)

Story	Drift	
STORY6	0.000002	
STORY5	0.000002	
STORY4	0.000001	
STORY3	0.000001	
STORY2	0.000001	
STORY1	0.000001	

DISPLACEMENT	RIGIDITY
0.000007	142857.1429

From these results, another table was created to calculate the relative stiffness and the proportioned wind and seismic loads:

Relative Stiffness and Proportioned Loads (X Direction)

<i>SW</i> #	STORY	Total P (kips)		RELATIVE	Element P (kips)	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
SW1	2	52	405	0.23	12	93
	3	56	296		13	68
	4	61	391		14	89
	5	66	484		15	111
	6	71	337		16	77

SW #	STORY	Total P (kips)		RELATIVE	Element P (kips	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
SW2	2	52	405	0.09	4	35
	3	56	296		5	25
	4	61	391		5	33
	5	66	484		6	42
	6	71	337		6	29

SW #	STORY	Total P (kips)		RELATIVE	Element P (kips)	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
	2 52 405	36	278			
SW3	3	56	296	0.69	39	203
	4	61	391		42	268
	5	66	484		45	332
	6	71	337		48	231

SW #	STORY	Total P (kips)		RELATIVE	Element P (kips)	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
	2	47	405	0.22	10	89
	3	51	296		11	65
SW1	4	55	391		12	86
	5	60	484		13	107
	6	64	337		14	74

Relative Stiffness and Proportioned Loads (Y Direction)

SW#	STORY	Total P (kips)		RELATIVE	Element P (kips)	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
	2	47	405	0.50	23	201
	3	51	296		25	147
SW2	4	55	391		28	194
	5	60	484		30	240
	6	64	337		32	167

<i>SW</i> #	STORY	Total P (kips)		RELATIVE	Element P (kips)	
		WIND	SEISMIC	STIFFNESS	WIND	SEISMIC
	2	47	405		13	115
SW3	3	51	296	0.28	15	84
	4	55	391		16	111
	5	60	484		17	137
	6	64	337		18	96

Shear Walls in the Building Structure

Following the shear wall analysis, the shear walls were modeled along with the rest of the building (see Figure 10) and analyzed for story drifts under the aforementioned load combination. The following assumptions were made during the creation of the model:

- Columns were all modeled as 24" x 24" columns despite the presence of six W12x40 columns.
- Beams were all modeled as 24" x 18" beams despite the presence of beams ranging in size from 24" x 18" to 32" x 36". This modeling assumption was based on the majority of the beams being 24" x 18".
- The floors were modeled as mass-less and weightless meshed semi-rigid diaphragms. As such, the openings on the floors such as elevator shafts and stair cases surrounded by the shear walls have been neglected.

The model yielded the following story drifts:

STORY	DRIFT	Δa
STORY6	0.051285	0.75
STORY5	0.13926	0.635
STORY4	0.131417	0.52
STORY3	0.103549	0.405
STORY2	0.045122	0.285
STORY1	0	0

Building Story Drift (X Direction)

Building Story Drift (Y Direction)

DRIFT	Δ_a
0.00748	0.75
0.007118	0.635
0.007757	0.52
0.006903	0.405
0.003511	0.285
0	0
	<i>DRIFT</i> 0.00748 0.007118 0.007757 0.006903 0.003511 0

Under the aforementioned loading condition and the modeling assumption for the analysis conducted, the Hospital is well within the allowable drift limits.

From the same analysis, a shear wall was randomly selected for a strength analysis. The base shear and moment were taken from the model. Refer to Appendix E for calculations.

Shear Wall Design and Analysis

From the full structural lateral load analysis, a shear wall was randomly picked for strength analysis basing all design calculations on the ACI 318-08 (note the structural drawings are dated in 2005/2006 and the author assumes the previous version of ACI 318 was used for the existing design).

From ETABS, the loading on the shear wall of interest was found to be 5900 k-ft of overturning moment and 630 kips of base shear. The design assumed that no boundary elements were required and also neglected secondary effects (see Appendix E for design calculations). The design is as follows:

Design	Hypothetical	Existing
Horizontal Shear Reinforcement	#4 @ 6" o.c.	#4 @ 12" o.c.
Vertical Shear Reinforcement	#4 @7" o.c.	#4 @ 12" o.c.
Flexural Reinforcement	(7) #8	(8) #5

Comparison of Shear Wall Design

From the assumptions and the analysis, the hypothetical design differs from the existing design. The greatest discrepancies in between the two are the flexural reinforcement. From the table above, the hypothetical design seems extremely conservative in its approach. This could be the result of assumptions made during the construction of the computer model. The greatest difference could arise from the difference of loading locations. The program by default assumes the loading of lateral forces directly to the center of mass or the center of rigidity (see Figure 11) depending on the type of lateral loads. Also, the floor was modeled as a semi-rigid diaphragm. In such case, the load path is almost neglected and the shear wall is almost directly loaded by the lateral loads.

Conclusion

The Monongalia General Hospital's lateral load resisting system was found to be a shear wall system, a different finding from the assumptions from earlier technical reports. The shear wall was analyzed against lateral loads under two main conditions: a shear wall by itself and as a system. Under these conditions drift of the shear walls and the building as whole, and the strength of the shear wall was studied. From the analyses conducted, the lateral force resisting system has proved to be adequate to resist the lateral forces.

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX A

PROJECT TEAM

Owner	Monongalia General	Phone: 304-598-7690
	Hospital	Fax: 304-598-7693
	1200 J.D. Anderson Dr.	Website:
	Morgantown, WV 26505	http://www.monhealthsys.org/
Architect and Interiors	Freeman White, Inc.	Phone: 704-523-2230
	8025 Arrowbridge Blvd.	Fax: 704-523-2235
	Charlotte, NC 28273-5665	Website:
		http://www.freemanwhite.com/
Civil Engineer	Alpha Associates, Inc.	Phone: 304-296-8216
	209 Prairie Ave.	Fax: 304-296-8216
	Morgantown, WV 26502	Website:
		http://www.alphaaec.com/
Construction Manager	Turner Construction	Phone: 412-255-5400
	Company	Fax: 412-255-0249
	Two PNC Plaza, 620	Website:
	Liberty Ave., 27th Floor	http://www.turnerconstruction.
	$1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 = 1 \rightarrow 1 = 1 \rightarrow 1 = 1 \rightarrow 1 \rightarrow$. /
	Pittsburgh, PA 15222-2719	com/
Geotechnical and	Pittsburgh, PA 15222-2719 Potesta Engineers and	com/ Phone: 304-225-2245
Geotechnical and Environmental Consultant	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental	com/ Phone: 304-225-2245 Fax: 304-225-2246
Geotechnical and Environmental Consultant	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website:
Geotechnical and Environmental Consultant	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants 125 Lakeview Drive	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/
Geotechnical and Environmental Consultant	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/
Geotechnical and Environmental Consultant Mechanical, Electrical, and	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508 Freeman White, Inc.	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing	Pittsburgh, PA 15222-2719Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508Freeman White, Inc. 2300 Rexwoods Dr., Suite	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website:
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508 Freeman White, Inc. 2300 Rexwoods Dr., Suite 300	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing	Pittsburgh, PA 15222-2719 Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508 Freeman White, Inc. 2300 Rexwoods Dr., Suite 300 Raleigh, NC 27607	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing Structural Engineer	Pittsburgh, PA 15222-2719Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508Freeman White, Inc. 2300 Rexwoods Dr., Suite 300 Raleigh, NC 27607Atlantic Engineering	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/ Phone: 412-338-9000
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing Structural Engineer	Pittsburgh, PA 15222-2719Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508Freeman White, Inc. 2300 Rexwoods Dr., Suite 300 Raleigh, NC 27607Atlantic Engineering Services	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/ Phone: 412-338-9000 Fax: 412-338-0051
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing Structural Engineer	Pittsburgh, PA 15222-2719Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508Freeman White, Inc. 2300 Rexwoods Dr., Suite 300 Raleigh, NC 27607Atlantic Engineering Services 650 Smithfield St., Suite	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/ Phone: 412-338-9000 Fax: 412-338-0051 Website:
Geotechnical and Environmental Consultant Mechanical, Electrical, and Plumbing Structural Engineer	Pittsburgh, PA 15222-2719Potesta Engineers and Environmental Consultants 125 Lakeview Drive Morgantown, WV 26508Freeman White, Inc. 2300 Rexwoods Dr., Suite 300 Raleigh, NC 27607Atlantic Engineering Services 650 Smithfield St., Suite 1200	com/ Phone: 304-225-2245 Fax: 304-225-2246 Website: http://www.potesta.com/ Phone: 919-782-0699 Fax: 919-783-0139 Website: http://www.freemanwhite.com/ Phone: 412-338-9000 Fax: 412-338-9000 Fax: 412-338-0051 Website: http://www.aespj.com/

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX B

FIGURES

Figure 1: Hospital Divided in Four Quads

Figure 2: Cross Section of the Monongalia General Hospital

Figure 3: Location of Shear Walls (Colored in blue)

Figure 4: Wind Loading - North to South

Figure 5: Wind Loading – East to West

Figure 6: Seismic Loading

Figure 7: Shear Wall Group 1 Loaded in X Direction

Figure 8: Shear wall Group 2 Loaded in X Direction

Figure 9: Shear Wall Group 3 Loaded in Y Direction

Figure 10: Monongalia General Hospital ETABS Model

Figure 11: Floor Diaphragm Extent (Top: Story 1; Bottom: Story 5)

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX C

PHOTOGRAPHS

Photograph 1: View from South-East

Photograph 2: Aerial Photo of the Monongalia General Hospital

Photograph 3: View from South-East showing the brick façade and curtain walls

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX D

CODES

Туре	Designed with	Analyzed with
Building	IBC 2000	IBC 2006
Structural	IBC 2003	IBC 2006
Plumbing	IPC 2000	-
Mechanical	IMC 2000	-
Electrical	NFPA 1999	-
Fire Safety	WV Fire Code 2002	-
Accessibility	ADA 1994	-
Energy	IEGC 2000	-
Fuel Gas	IFGC 2000	-
Sprinkler	NFPA 13	-

Construction Type: 1-A

Primary Occupancy: Institutional I-2

At the point of the project design phase, the building codes that were effective in Morgantown, WV are the ones listed above under the "Designed with" column. Today, the city of Morgantown has adopted the latest codes and ordinances.

The shearwalls were designed as per ACI 318-08.

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX E

CALCULATIONS

E-1

	STRENGTH CHECK 'SHEAZ WALL .
0	# P'c = 5000psi Fy = 60000 psi
	5900K-PT + ASSUME: NO BOUNDARY ELEMBNT REQUIRED.
	THE ASSOCIATION & LOAD DUE TO WIND (CONTROLLING) THE ASSOCIATION & GRAVITY CAN BE NEGLECTED.
	- SHEAR DESIGN.
	- CHECK PERMITTED SHEAR
	sod 2 0.8 lw
	= 0.8(28.167')(12"/A)
0	d = 270"
	630K \$ (0.75)(6) \$ 5000 psi (12")(270) = 1718K (GOD) - SHEAZ STZENGTH BY VC
	Vc1 = 2. / t'c h.d
	= 2 (5000psi / 1/2") (270")
	.: Ve, = 458k
	= 3.3 (5000 psi (12")(270")
	~ Vc2 * 756 K.
	Ves : [0.61 fic + huli25 J Fic]. hid
0	=> CRITICAL SECTION
	$\frac{1}{2} = \frac{1}{2} $
	$C^{(2)}(2) = 3+3$ $\longrightarrow CAUTID.$

	=> CRUTICKE SECTION
	$M_{U} = V_{U}(h_{W}-2)$
	$= V_{U}(75'-14.1')(12'/R)$
	Mu = 731 VU
	$V_{CS} : \left[2.6 \sqrt{5000 \text{ psi}} + \frac{(28.167)(12/(42)(1.25)(5000 \text{ psi}))}{731 V_{V}/V_{V}} - \frac{(28.167)(12/(42)/2}{(28.167)(12/(42)/2)} \right] (12'') (272'')$
	·· Ves = 310K + Constrans
	- RECUIRED HOZIZONTAL SHEAR BEINFORCEMENT
	- CHECK'
	vu 3 t dve
	630K > 1/2 (0.75)(310K) = 116K
	$\Rightarrow V_U \leq QV_N \cdot Q(V_C + V_S)$
	630K 5 (0.75) (310K + Vs)
	V3 2 530K.
	- RECUIZED STEEL DENTERTENT
	Av ve
	530K
	(60KS)(270")
	: <u>AV</u> 2 0.0327
	=> TEH (1) # 4
	S 2 0.2 12
	0.0327
0	
	->CDUT'D

	- FLEXVES DESIGN
	- CHECK AREA OF STEEL IN TENSION
	Mu = Vuhu = \$Mu = \$Asfyjd
-	=> jd = 0.9d
	· 0.9(270")
	:.jd = 243"
	(5900E. Pt)(12"/Pt) = (0.9) As (60ESi)(243")
	: ks 2 5:4112
	- CHECK CRITICKE SECTION
	0.05 Feb.2 2 Asty
	5.63 (SES)(C) a . (3.112) (D-40)
	$id = d - \frac{a}{2}$
	1 270" - (6.35"/2)
	i jd * 267"
	- REQUIRED STEEL REINFORCEMENT
	MU = QASFYJd
	(5900K·A)(12"/A) · (0.9)A3(60K31)(267")
	1. As = 4.9 m2
	. USE (7) # 8 ; AS : S.S.M. (EXISTING USES (8) # 5)
	-TONSTID.

MONONGALIA GENERAL HOSPITAL

LATERAL SYSTEM ANALYSIS AND CONFIRMATION DESIGN

APPENDIX F

REFERENCES

References

The following resources were utilized or considered in the writing of this report.

Construction Documents

- Volume 1 Architecture, Interiors, Food Services by Freeman White, Inc.
 - o A6-1
 - o G1-2
- Volume 2 *Structures* by Atlantic Engineering Services
 - o S2-0
 - o S2-4AD Bottom
 - o S2-4AD Top
 - o S3-0
 - o S3-1
 - o S4-0
 - o S4-1
 - o S4-4
 - o S8-0
- *Geotechnical Report* by Potesta Engineers and Environmental Consultants.

Photographs

- Photograph 1 and 3 taken by the Turner Construction Company.

Publications

- ACI 318-08, *Building Code Requirements for Structural Concrete* by the American Concrete Institute.
- AISC 13th Edition, *Steel Construction Manual* by the American Institute of Steel Construction.
- ASCE/SEI 7-05, *Minimum Design Loads for Buildings and Other Structures* by the American Society of Civil Engineers.
- *Design of Concrete Structures* 13th Edition, by Nilson, et. al.
- IBC 2006, by the International Code Committee.

Websites

- Monongalia General Hospital, <http://www.monhealthsys.org>.